

GRADE 3

TEKS/STAAR Spiraled Practice

Correlated by Category/TEKS

TEKSING TOWARD STAAR © 2014

OVERVIEW

Grade 3 Spiraled Practice Including Class and Student Profiles

This document was created with all students in mind and provides teachers with sets of 3 spiraled questions to assess student mastery of TEKS assessed on STAAR as well as Class and Student Profiles designed for recording and analysis of performance data. Each question in this document is correlated to a specific STAAR Category and TEKS.

This document provides both multiple choice and answer grid formats. However, the questions can easily be utilized without the multiple choice answers or answer grid. The questions are spiraled through all TEKS and pieces of TEKS that are eligible for assessment on STAAR. Twenty spirals are provided for each six weeks for a total of 120 Spiraled Practice sets.

The spiraling of the questions takes into consideration the following information from the STAAR Grade 3 Mathematics Blueprint released from the TEA in January 2014:

- 60% 65% of the questions will assess Readiness Standards 28-30 of 46 total questions
- 35% 40% of the questions will assess Supporting Standards 16-18 of 46 total questions
- 43 questions will be multiple choice format and 3 questions will be griddable format

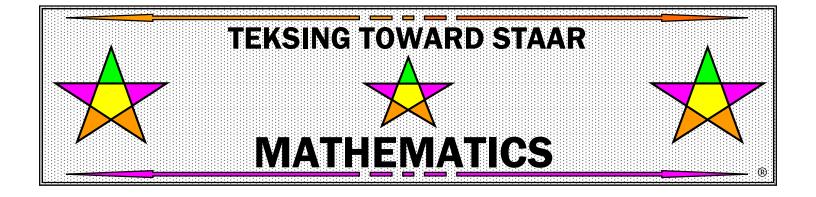
The Profiles were designed to enable teachers and students to keep a record of mastery of all TEKS, not just the ones assessed on STAAR. Every question on each Spiraled Practice is correlated on the Profiles. Teachers keep a Class Profile to guide plans for instruction for each class they teach. Students keep a Student Profile so they will know their own individual strengths and weaknesses. Teachers view individual Student Profiles to guide plans for small group instruction and individualized tutorials.

NOTE: There is no answer key provided for this document, as the authors' philosophy is that each teacher should create a personalized Solutions Manual so the teacher becomes more familiar with the Revised TEKS and assessment of the Revised TEKS, as well as formulates various solution strategies for each question. Teachers are encouraged to communicate with the authors regarding discussion of any question in this document.

AUTHORS' VISION FOR IMPLEMENTATION – SPIRALED PRACTICE

- Begin the class period with a Spiraled Practice. Students work in Partner Pairs until Six Weeks 4 when they begin working individually without assistance.
- Students should first identify the MAIN IDEA and SUPPORTING DETAILS for each problem, then work each problem – they must show all work they do to help them choose their answer – the objective would be that anyone who looks at their paper should be able to understand how they chose their answer.
- After students begin working, quietly assign three different Partner Pairs as **SHARE PAIRS** for the 3 problems. If you have an opaque projection device, the share pairs will share their work from their paper. If you do not, then prior to class label 3 different transparencies as 1, 2, and 3 (small numbers in the top left corner of each transparency) and distribute the blank transparencies and overhead pens to the **SHARE PAIRS** so they will be able to show their work utilizing an overhead projector.
- The **SHARE PAIRS** and are assigned to work on their assigned problem **FIRST**, then complete the other questions if they have time they must **SHOW** all work the teacher should monitor the share pairs closely and answer any questions they have about the problem.
- ALL students should work in pairs to complete a Spiraled Practice in 6 minutes each student recording on their individual page(s). Call **TIME** after 6 minutes.
- Immediately SHARE PAIR 1 places their paper or paper or transparency on the projection device and shares how they solved the problem. First, they say "The main idea of the problem is..."; next they say "The supporting details in the problem are...". Finally they share the process they used to answer the problem. After sharing, they ask the class: "Did anyone get a different answer?" and "Did anyone solve the problem differently?" If someone did, they share and discussion follows. If the SHARE PAIR could not complete the problem (however, ever share pair/student should be expected to find the main idea and supporting details in each problem, even if they cannot answer the problem), they ask the class if anyone could complete the problem – if so, a pair that completed the problem is asked to come up and share their work with discussion following.
- If no student could answer the problem correctly, the teacher makes a decision whether to continue discussion of the problem at this point, or to delay discussion until a more appropriate time (if the decision is made to delay discussion, tell the students that they will be working on this problem in a major lesson later and discussion will continue then).

CLASS PROFILE


- Teachers record in a Class Profile for each class. The questions on each Spiraled Practice are correlated on the Class Profile.
- Suggestion for recording class data: Record + if class data demonstrates mastery Record – if class data demonstrates improvement needed
- Record + based on the following:

August/September – Record + if 50% or higher of class demonstrates mastery October – Record + if 60% or higher of class demonstrates mastery November – Record + if 70% or higher of class demonstrates mastery December – Record + if 80% or higher of class demonstrates mastery January-May – Record + if 90% or higher of class demonstrates mastery

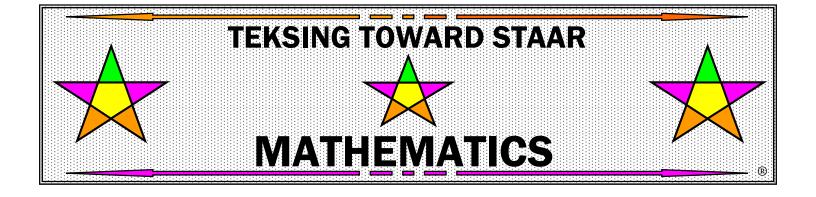
- Periodically highlight all + in green and highlight all in hot pink.
- Begin glancing over each Class Profile by TEKS to identify areas of strength and weakness. Use this data to make instructional decisions regarding focus for instructional time by class.

STUDENT PROFILE

- Each student records in an individual Student Profile teachers do not record in Student Profiles. The questions on each Spiraled Practice are correlated on the Student Profile.
- Record +/- based on the following:
 - Record + if answer is correct
 - Record if answer is incorrect
- Periodically highlight all + in green and highlight all in hot pink.
- Student Periodically glance over the Student Profile to identify areas of strength and weakness
- Teacher Periodically glance over each Student Profile by TEKS to identify areas of individual strength and weakness. Use data to make instructional decisions regarding focus for tutorial time.

Grade 3 Class Profile for Spiraled Practice

Teacher Class___


TEKSING TOWARD STAAR © 2014

		REPORTING CATEGORY 1: NUMERICAL REP	KE3							пгэ		
Standard	TEKS	Student Expectation				Clas	s Per	forma	ance			
Readiness	3.2(A)	compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many	1	10	18	27	36	45	53	62	71	80
		thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and	88	93	103	108						
		numbers, including expanded notation as appropriate										
Supporting	3.2(B)	describe the mathematical relationships found in the base-10 place value system through the hundred thousands place	31	46	60	95						
Supporting	3.2(C)	represent a number on a number line as being between two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relative	2	33	97	117						
Deadiness	2 2(D)	size of numbers in order to round whole numbers		10	21	20	20	47	ГС		70	0.2
Readiness	3.2(D)	compare and order whole numbers up to 100,000 and represent comparisons using the symbols >,	3	12	21	30	38	47	56	65	73	82
		<, or =	90	96	105	111						
Supporting	3.3(A)	represent fractions greater than zero and less than or equal to one with denominators of 2, 3, 4, 6,	7	37	66	100						
		and 8 using concrete objects and pictorial models, including strip diagrams and number lines										
Supporting	3.3(B)	determine the corresponding fraction greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 given a specified	11	40	68	102						
Supporting	3.3(C)	point on a number line explain that the unit fraction 1/b represents the	5	13	42	72						
		quantity formed by one part of a whole that has been partitioned into <i>b</i> equal parts where <i>b</i> is a non-zero whole number										
Supporting	3.3(D)	compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as a sum of parts $1/b$	16	64	75	112						
Supporting	3.3(E)	solve problems involving partitioning an object or a set of objects among two or more recipients	20	48	77	115						
		using pictorial representations of fractions with denominators of 2, 3, 4, 6, and 8										
Readiness	3.3(F)	represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety of objects and	6	15	23	32	41	50	58	67	76	85
		pictorial models, including number lines	91	98	106	113						
Supporting	3.3(G)	explain that two fractions are equivalent if and only if they are both represented by the same	22	51	81	110						
		point on the number line or represent the same portion of a same size whole for an area model										
Readiness	3.3(H)	compare two fractions having the same numerator or denominator in problems by reasoning about	8	17	26	35	43	52	61	70	78	87
		their sizes and justifying the conclusion using symbols, words, objects, and pictorial models	92	101	107	116						
Supporting	3.4(I)	determine if a number is even or odd using divisibility rules	25	55	83	118						
Supporting	3.7(A)	represent fractions of halves, fourths, and eighths as distances from zero on a number line.	28	57	86	120						

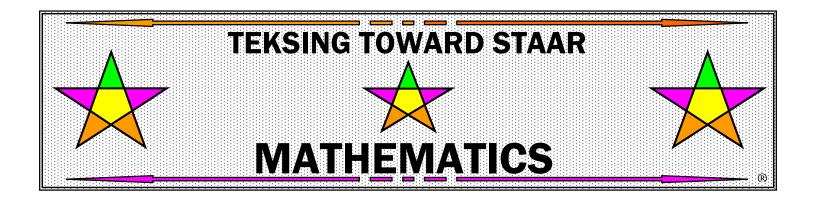
	STAA	R REPORTING CATEGORY 2: COMPUTATION	IS AN	ND AL	GEB	RAIC	REL	ATIO	NSH	PS		
Standard	TEKS	Student Expectation				Clas	s Per	forma	ance			
Readiness	3.4(A)	solve with fluency one-step and two-step problems involving addition and subtraction	1	9	15	22	29	36	43	50	57	64
		within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction	71	78	84	92	99	105	114			
Supporting	3.4(B)	round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems	2	20	39	58	77	113				<u> </u>
Supporting	3.4(D)	determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10	4	23	41	60	79	98	114			
Supporting	3.4(E)	represent multiplication facts by using a variety of approaches such as repeated addition, equal- sized groups, arrays, area models, equal jumps on a number line, and skip counting	6	24	44	62	81	99	116			
Supporting	3.4(F)	recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts	8	27	45	83	95	102	118			
Supporting	3.4(G)	use strategies and algorithms, including standard algorithm, to multiply a two-digit number by a one-digit number: mental math, partial products;	10	29	48	66	85	104	119			
Supporting	3.4(H)	commutative, associative, distributive properties determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally	12	31	49	69	87	106				
Supporting	3.4(J)	determine a quotient using the relationship between multiplication and division	14	33	52	70	89	108				
Readiness	3.4(K)	solve one-step and two-step problems involving multiplication and division within 100 using	3	9	17	24	30	38	44	51	59	65
		strategies based on objects; pictorial models, including arrays, area models, and equal groups; properties of operations; or recall of facts	72	79	86	93	100	107	115			<u> </u>
Readiness	3.5(A)	represent one- and two-step problems involving addition and subtraction of whole numbers to	4	11	19	25	32	39	46	53	59	67
		1,000 using pictorial models, number lines, and equations	74	80	88	94	101	109	117			<u> </u>
Readiness	3.5(B)	represent and solve one- and two-step multiplication and division problems within 100	5	13	19	26	34	40	47	54	61	68
		using arrays, strip diagrams, and equations	75	82	89	96	103	110	119			<u> </u>
Supporting	3.5(C)	describe a multiplication expression as a comparison such as 3 x 24 represents 3 times as much as 24	16	35	54	73	91	109				
Supporting	3.5(D)	determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product	18	37	56	74	94	111				
Readiness	3.5(E)	represent real-world relationships using number pairs in a table and verbal descriptions	7	14	21	28	34	42	49	55	63	69
			76	84	90	97	104	112	120			
												ļ

	STAAR REPORTING CATEGORY 3: GEOMETRY AND MEASUREMENT Standard TEKS Student Expectation Class Performance											
Standard	TEKS	Student Expectation				Clas	s Per	forma	ance			
Readiness	3.6(A)	classify and sort two- and three-dimensional solids, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes	1 81	9 89	16 98	24 108	31 116	39	48	54	64	73
		using formal geometric language	01	09	90	108	110					<u> </u>
Supporting	3.6(B)	use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples that do not belong to any of these subcategories	3	33	63	74	106					
Readiness	3.6(C)	determine the area of rectangles with whole number side lengths in problems using	4	11	19	26	34	43	49	63	68	76
		multiplication related to the number of rows times the number of unit squares in each row	83	91	101	111	119					
Supporting	3.6(D)	decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive	8	66	78	109						
Supporting	3.6(E)	property of area decompose two congruent 2-D figures into parts with equal areas and express area of each part as a unit fraction of the whole & recognize equal shares of identical wholes need not have the same shape	13	36	69	84	114					
Readiness	3.7(B)	determine the perimeter of a polygon or a missing length when given perimeter and	6	14	21	29	38	44	53	58	61	71
		remaining side lengths in problems	79	86	94	104	113					
Supporting	3.7(C)	determine the solutions to problems involving addition & subtraction of time intervals in minutes using pictorial models or tools such as a 15-min	18	41	88	93	118					<u> </u>
		event plus a 30-min event equals 45 min										<u> </u>
Supporting	3.7(D)	determine when it is appropriate to use measurements of liquid volume (capacity) or weight	23	46	56	96	99					
Supporting	3.7(E)	determine liquid volume (capacity) or weight using appropriate units and tools	28	51	59	103	112					

	S	TAAR REPORTING CATEGORY 4: DATA ANA	LYSI	S ANI	D FIN	ANCI	AL L	ITER.	ACY			
Standard	TEKS	Student Expectation				Clas	s Perf	forma	nce			
Supporting	3.4(C)	determine the value of a collection of coins and bills	2	5	35	65	95					
Readiness	3.8(A)	summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or	7	12	17	22	27	32	37	42	47	52
		bar graph with scaled intervals	57	62	67	72	77	87	92	97	102	117
Supporting	3.8(B)	solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals	10	40	70	82	100					
Supporting	3.9(A)	explain the connection between human capital/labor and income	15	45	75	105						
Supporting	3.9(B)	describe the relationship between the availability or scarcity of resources and how that impacts cost	20	50	80	110						
Not Tested	3.9(C)	identify the costs and benefits of planned and unplanned spending decisions										
Supporting	3.9(D)	explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the	25	55	85	115						
Supporting	3.9(E)	lender, usually with interest list reasons to save and explain the benefit of a savings plan, including for college	30	60	90	120						
Not Tested	3.9(F)	identify decisions involving income, spending, saving, credit, and charitable giving										

Grade 3 Student Profile for Spiraled Practice

Student Teacher


TEKSING TOWARD STAAR © 2014

		REPORTING CATEGORY 1: NUMERICAL REF	NL0									
Standard	TEKS	Student Expectation		1	1	Stude	-		•		T	
Readiness	3.2(A)	compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many	1	10	18	27	36	45	53	62	71	80
		thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as	88	93	103	108						
Supporting	3.2(B)	appropriate describe the mathematical relationships found in the base-10 place value system through the hundred thousands place	31	46	60	95						
Supporting	3.2(C)	represent a number on a number line as being between two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relative	2	33	97	117						
Readiness	3.2(D)	size of numbers in order to round whole numbers compare and order whole numbers up to 100,000	3	12	21	30	38	47	56	65	73	82
		and represent comparisons using the symbols >, <, or =	90	96	105	111						
Supporting	3.3(A)	represent fractions greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models,	7	37	66	100						
Supporting	3.3(B)	including strip diagrams and number lines determine the corresponding fraction greater than	11	40	68	102						<u> </u>
Supporting	5.5(6)	zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number line		40	00	102						
Supporting	3.3(C)	explain that the unit fraction 1/b represents the quantity formed by one part of a whole that has been partitioned into b equal parts where b is a non-zero whole number	5	13	42	72						
Supporting	3.3(D)	compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as a sum of parts $1/b$	16	64	75	112						
Supporting	3.3(E)	solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with	20	48	77	115						
Readiness	3.3(F)	denominators of 2, 3, 4, 6, and 8 represent equivalent fractions with denominators	6	15	23	32	41	50	58	67	76	85
		of 2, 3, 4, 6, and 8 using a variety of objects and pictorial models, including number lines	91	98	106	113						
Supporting	3.3(G)	explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same	22	51	81	110						
Readiness	3.3(H)	portion of a same size whole for an area model compare two fractions having the same numerator	8	17	26	35	43	52	61	70	78	87
		or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models	92	101	107	116						
Supporting	3.4(I)	determine if a number is even or odd using divisibility rules	25	55	83	118						
Supporting	3.7(A)	represent fractions of halves, fourths, and eighths as distances from zero on a number line.	28	57	86	120						

		R REPORTING CATEGORY 2: COMPUTATION										
Standard	TEKS	Student Expectation				Stude	ent Pe	erforn	nance			
Readiness	3.4(A)	solve with fluency one-step and two-step problems involving addition and subtraction	1	9 78	15 84	22 92	29 99	36 105	43 114	50	57	64
		within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction	/1	70	04	92	33	105	114			
Supporting	3.4(B)	round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems	2	20	39	58	77	113				
Supporting	3.4(D)	determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10	4	23	41	60	79	98	114			
Supporting	3.4(E)	represent multiplication facts by using a variety of approaches such as repeated addition, equal- sized groups, arrays, area models, equal jumps on a number line, and skip counting	6	24	44	62	81	99	116			
Supporting	3.4(F)	recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts	8	27	45	83	95	102	118			<u> </u>
Supporting	3.4(G)	use strategies and algorithms, including standard algorithm, to multiply a two-digit number by a one-digit number: mental math, partial products;	10	29	48	66	85	104	119			<u> </u>
Supporting	3.4(H)	commutative, associative, distributive properties determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally	12	31	49	69	87	106				<u> </u>
Supporting	3.4(J)	determine a quotient using the relationship between multiplication and division	14	33	52	70	89	108				+
Readiness	3.4(K)	solve one-step and two-step problems involving	3	9	17	24	30	38	44	51	59	65
		multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models, and equal groups; properties of operations; or recall of facts	72	79	86	93	100	107	115			\vdash
Readiness	3.5(A)	represent one- and two-step problems involving addition and subtraction of whole numbers to	4	11	19	25	32	39	46	53	59	67
		1,000 using pictorial models, number lines, and equations	74	80	88	94	101	109	117			<u> </u>
Readiness	3.5(B)	represent and solve one- and two-step multiplication and division problems within 100	5	13	19	26	34	40	47	54	61	68
		using arrays, strip diagrams, and equations	75	82	89	96	103	110	119			
Supporting	3.5(C)	describe a multiplication expression as a	16	35	54	73	91	109				
		comparison such as 3 x 24 represents 3 times as much as 24										
Supporting	3.5(D)	determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product	18	37	56	74	94	111				$\left - \right $
Readiness	3.5(E)	represent real-world relationships using number pairs in a table and verbal descriptions	7	14	21	28	34	42	49	55	63	69
			76	84	90	97	104	112	120			

		STAAR REPORTING CATEGORY 3: GEON	IETR	Y AN	ID ME	EASU	REM	ENT				
Standard	TEKS	Student Expectation				Stude	nt Pe	rforn	nance	•		
Readiness	3.6(A)	classify and sort two- and three-dimensional solids, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language	1 81	9 89	16 98	24 108	31 116	39	48	54	64	73
Supporting	3.6(B)	use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples that do not belong to any of these subcategories	3	33	63	74	106					
Readiness	3.6(C)	determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times	4	11	19	26	34	43	49	63	68	76
		the number of unit squares in each row	83	91	101	111	119					
Supporting	3.6(D)	decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive property of area	8	66	78	109						
Supporting	3.6(E)	decompose two congruent 2-D figures into parts with equal areas and express area of each part as a unit fraction of the whole & recognize equal shares of identical wholes need not have the same shape	13	36	69	84	114					-
Readiness	3.7(B)	determine the perimeter of a polygon or a missing length when given perimeter and	6	14	21	29	38	44	53	58	61	71
		remaining side lengths in problems	79	86	94	104	113					
Supporting	3.7(C)	determine the solutions to problems involving addition & subtraction of time intervals in minutes using pictorial models or tools such as a 15-min event plus a 30-min event equals 45 min	18	41	88	93	118					
Supporting	3.7(D)	determine when it is appropriate to use measurements of liquid volume (capacity) or weight	23	46	56	96	99					
Supporting	3.7(E)	determine liquid volume (capacity) or weight using appropriate units and tools	28	51	59	103	112					<u> </u>

	S	TAAR REPORTING CATEGORY 4: DATA ANA		S ANI	D FIN	ANCI	AL L	ITER	ACY			
Standard	TEKS	Student Expectation			1	Stude	nt Pe	rforn	nance			
Supporting	3.4(C)	determine the value of a collection of coins and bills	2	5	35	65	95					
Readiness	3.8(A)	summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or	7	12	17	22	27	32	37	42	47	52
		bar graph with scaled intervals	57	62	67	72	77	87	92	97	102	117
Supporting	3.8(B)	solve one - and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals	10	40	70	82	100					
Supporting	3.9(A)	explain the connection between human capital/labor and income	15	45	75	105						
Supporting	3.9(B)	describe the relationship between the availability or scarcity of resources and how that impacts cost	20	50	80	110						
Not Tested	3.9(C)	identify the costs and benefits of planned and unplanned spending decisions										
Supporting	3.9(D)	explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the	25	55	85	115						
Supporting	3.9(E)	lender, usually with interest list reasons to save and explain the benefit of a savings plan, including for college	30	60	90	120						
Not Tested	3.9(F)	identify decisions involving income, spending, saving, credit, and charitable giving										

GRADE 3

TEKS/STAAR Spiraled Practice

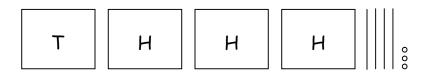
Correlated by Category/TEKS

TEKSING TOWARD STAAR © 2014

Grade 3 - TEKS/STAAR Spiraled Practice Table of Contents

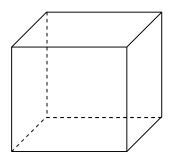
Spiral	Question 1	Question 2	Question 3
1	Category 1/3.2A	Category 2/3.4A	Category 3/3.6A
2	Category 2/3.4B	Category 4/3.4C	Category 1/3.2C
3	Category 2/3.4K	Category 3/3.6B	Category 1/3.2D
4	Category 2/3.4D	Category 3/3.6C	Category 2/3.5A
5	Category 4/3.4C	Category 1/3.3C	Category 2/3.5B
6	Category 1/3.3F	Category 2/3.4E	Category 3/3.7B
7	Category 2/3.5E	Category 1/3.3A	Category 4/3.8A
8	Category 2/3.4F	Category 3/3.6D	Category 1/3.3H
9	Category 2/3.4A	Category 3/3.6A	Category 2/3.4K
10	Category 4/3.8B	Category 1/3.2A	Category 2/3.4G
11	Category 1/3.3B	Category 2/3.5A	Category 3/3.6C
12	Category 2/3.4H	Category 1/3.2D	Category 4/3.8A
13	Category 2/3.5B	Category 3/3.6E	Category 1/3.3C
14	Category 2/3.5E	Category 3/3.7B	Category 2/3.4J
15	Category 4/3.9A	Category 1/3.3F	Category 2/3.4A
16	Category 1/3.3D	Category 2/3.5C	Category 3/3.6A
17	Category 2/3.4K	Category 4/3.8A	Category 1/3.3H
18	Category 2/3.5D	Category 3/3.7C	Category 1/3.2A
19	Category 2/3.5A	Category 3/3.6C	Category 2/3.5B
20	Category 4/3.9B	Category 1/3.3E	Category 2/3.4B
21	Category 1/3.2D	Category 2/3.5E	Category 3/3.7B
22	Category 2/3.4A	Category 4/3.8A	Category 1/3.3G
23	Category 2/3.4D	Category 3/3.7D	Category 1/3.3F
24	Category 2/3.4K	Category 3/3.6A	Category 2/3.4E
25	Category 4/3.9D	Category 1/3.4I	Category 2/3.5A
26	Category 1/3.3H	Category 2/3.5B	Category 3/3.6C
27	Category 2/3.4F	Category 4/3.8A	Category 1/3.2A
28	Category 2/3.5E	Category 3/3.7E	Category 1/3.7A
29	Category 2/3.4G	Category 3/3.7B	Category 2/3.4A
30	Category 4/3.9E	Category 1/3.2D	Category 2/3.4K
31	Category 1/3.2B	Category 2/3.4H	Category 3/3.6A
32	Category 2/3.5A	Category 4/3.8A	Category 1/3.3F
33	Category 2/3.4J	Category 3/3.6B	Category 1/3.2C
34	Category 2/3.5B	Category 3/3.6C	Category 2/3.5E
35	Category 4/3.4C	Category 1/3.3H	Category 2/3.5C
36	Category 1/3.2A	Category 2/3.4A	Category 3/3.6E
37	Category 2/3.5D	Category 4/3.8A	Category 1/3.3A
38	Category 2/3.4K	Category 3/3.7B	Category 1/3.2D
39	Category 2/3.5A	Category 3/3.6A	Category 2/3.4B
40	Category 4/3.8B	Category 1/3.3B	Category 2/3.5B

Grade 3 - TEKS/STAAR Spiraled Practice Table of Contents


Spiral	Question 1	Question 2	Question 3
41	Category 1/3.3F	Category 2/3.4D	Category 3/3.7C
42	Category 2/3.5E	Category 4/3.8A	Category 1/3.3C
43	Category 2/3.4A	Category 3/3.6C	Category 1/3.3H
44	Category 2/3.4E	Category 3/3.7B	Category 2/3.4K
45	Category 4/3.9A	Category 1/3.2A	Category 2/3.4F
46	Category 1/3.2B	Category 2/3.5A	Category 3/3.7D
47	Category 2/3.5B	Category 4/3.8A	Category 1/3.2D
48	Category 2/3.4G	Category 3/3.6A	Category 1/3.3E
49	Category 2/3.5E	Category 3/3.6C	Category 2/3.4H
50	Category 4/3.9B	Category 1/3.3F	Category 2/3.4A
51	Category 1/3.3G	Category 2/3.4K	Category 3/3.7E
52	Category 2/3.4J	Category 4/3.8A	Category 1/3.3H
53	Category 2/3.5A	Category 3/3.7B	Category 1/3.2A
54	Category 2/3.5C	Category 3/3.6A	Category 2/3.5B
55	Category 4/3.9D	Category 1/3.4I	Category 2/3.5E
56	Category 1/3.2D	Category 2/3.5D	Category 3/3.7D
57	Category 2/3.4A	Category 4/3.8A	Category 1/3.7A
58	Category 2/3.4B	Category 3/3.7B	Category 1/3.3F
59	Category 2/3.4K	Category 3/3.7E	Category 2/3.5A
60	Category 4/3.9E	Category 1/3.2B	Category 2/3.4D
61	Category 1/3.3H	Category 2/3.5B	Category 3/3.7B
62	Category 2/3.4E	Category 4/3.8A	Category 1/3.2A
63	Category 3/3.6C	Category 2/3.5E	Category 3/3.6B
64	Category 2/3.4A	Category 3/3.6A	Category 1/3.3D
65	Category 4/3.4C	Category 1/3.2D	Category 2/3.4K
66	Category 1/3.3A	Category 2/3.4G	Category 3/3.6D
67	Category 2/3.5A	Category 4/3.8A	Category 1/3.3F
68	Category 2/3.5B	Category 3/3.6C	Category 1/3.3B
69	Category 2/3.4H	Category 3/3.6E	Category 2/3.5E
70	Category 4/3.8B	Category 1/3.3H	Category 2/3.4J
71	Category 1/3.2A	Category 2/3.4A	Category 3/3.7B
72	Category 2/3.4K	Category 4/3.8A	Category 1/3.3C
73	Category 2/3.5C	Category 3/3.6A	Category 1/3.2D
74	Category 2/3.5A	Category 3/3.6B	Category 2/3.5D
75	Category 4/3.9A	Category 1/3.3D	Category 2/3.5B
76	Category 1/3.3F	Category 2/3.5E	Category 3/3.6C
77	Category 2/3.4B	Category 4/3.8A	Category 1/3.3E
78	Category 2/3.4A	Category 3/3.6D	Category 1/3.3H
79	Category 2/3.4D	Category 3/3.7B	Category 2/3.4K
80	Category 4/3.9B	Category 1/3.2A	Category 2/3.5A

Grade 3 - TEKS/STAAR Spiraled Practice Table of Contents

Spiral	Question 1	Question 2	Question 3
81	Category 1/3.3G	Category 2/3.4E	Category 3/3.6A
82	Category 2/3.5B	Category 4/3.8B	Category 1/3.2D
83	Category 2/3.4F	Category 3/3.6C	Category 1/3.4I
84	Category 2/3.5E	Category 3/3.6E	Category 2/3.4A
85	Category 4/3.9D	Category 1/3.3F	Category 2/3.4G
86	Category 1/3.7A	Category 2/3.4K	Category 3/3.7B
87	Category 2/3.4H	Category 4/3.8A	Category 1/3.3H
88	Category 2/3.5A	Category 3/3.7C	Category 1/3.2A
89	Category 2/3.5B	Category 3/3.6A	Category 2/3.4J
90	Category 4/3.9E	Category 1/3.2D	Category 2/3.5E
91	Category 1/3.3F	Category 2/3.5C	Category 3/3.6C
92	Category 2/3.4A	Category 4/3.8A	Category 1/3.3H
93	Category 2/3.4K	Category 3/3.7C	Category 1/3.2A
94	Category 2/3.5D	Category 3/3.7B	Category 2/3.5A
95	Category 4/3.4C	Category 1/3.2B	Category 2/3.4F
96	Category 1/3.2D	Category 2/3.5B	Category 3/3.7D
97	Category 2/3.5E	Category 4/3.8A	Category 1/3.2C
98	Category 2/3.4D	Category 3/3.6A	Category 1/3.3F
99	Category 2/3.4A	Category 3/3.7D	Category 2/3.4E
100	Category 4/3.8B	Category 1/3.3A	Category 2/3.4K
101	Category 1/3.3H	Category 2/3.5A	Category 3/3.6C
102	Category 2/3.4F	Category 4/3.8A	Category 1/3.3B
103	Category 2/3.5B	Category 3/3.7E	Category 1/3.2A
104	Category 2/3.4G	Category 3/3.7B	Category 2/3.5E
105	Category 4/3.9A	Category 1/3.2D	Category 2/3.4A
106	Category 1/3.3F	Category 2/3.4H	Category 3/3.6B
107	Category 2/3.4K	Category 4/3.6D	Category 1/3.3H
108	Category 2/3.4J	Category 3/3.6A	Category 1/3.2A
109	Category 2/3.5A	Category 3/3.6D	Category 2/3.5C
110	Category 4/3.9B	Category 1/3.3G	Category 2/3.5B
111	Category 1/3.2D	Category 2/3.5D	Category 3/3.6C
112	Category 2/3.5E	Category 3/3.7E	Category 1/3.3D
113	Category 2/3.4B	Category 3/3.7B	Category 1/3.3F
114	Category 2/3.4A	Category 3/3.6E	Category 2/3.4D
115	Category 4/3.9D	Category 1/3.3E	Category 2/3.4K
116	Category 1/3.3H	Category 2/3.4E	Category 3/3.6A
117	Category 2/3.5A	Category 4/3.8A	Category 1/3.2C
118	Category 2/3.4F	Category 3/3.7C	Category 1/3.4I
119	Category 2/3.5B	Category 3/3.6C	Category 2/3.4G
120	Category 4/3.9E	Category 1/3.7A	Category 2/3.5E


TEKS/STAAR SPIRALED PRACTICE 1 Grade 3

1. Miguel drew a picture to represent the number of fiction books in the school library.

How many fiction books are in the school library?

- **A** 1,432
- **B** 1,334
- **C** 1,343
- **D** 1,342
- 2. Cheri had 135 inches of ribbon left on one roll. She bought a second roll that had 75 inches of ribbon. Cheri used 155 inches of ribbon to make bows for 4 gifts and 25 inches to make a hair bow. What could Cheri do to find how many inches of ribbon she has left?
 - **F** Subtract 75 from 135, then add the sum of 155 and 25 to the difference.
 - **G** Subtract the sum of 155 and 25 from the sum of 135 and 75.
 - **H** Add 135 and 175, then subtract the sum from 155, then add 25.
 - **J** Add 135, 75 and 155, then subtract 25 from the sum.
- 3. A cube is represented below.

Which statement is true?

- **A** A cube has 4 edges and 4 faces.
- **B** A cube has 8 edges and 8 faces.
- **C** A cube has 12 edges and 6 faces.
- **D** A cube has 14 edges and 8 faces.

TEKS/STAAR SPIRALED PRACTICE 21 Grade 3

1. The table below shows the number of each color of school t-shirt ordered by the students at Lee Elementary School.

Color of T-Shirt	Number of T-Shirts
White	461
Blue	452
Red	443
Gold	457

The students ordered more than 444 but less than 453 of which color of t-shirt?

- **A** White
- **B** Blue
- C Red
- D Gold
- 2. Each school spirit shirt costs \$8. Which table correctly represents the total cost for 7, 8, 11, and 15 shirts?

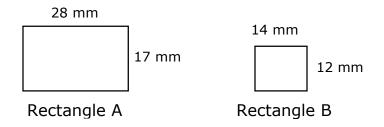
School Spirit Shirts

c	Number of Shirts	7	8	11	15
Г	Total Cost	\$8	\$16	\$24	\$32

School Spirit Shirts

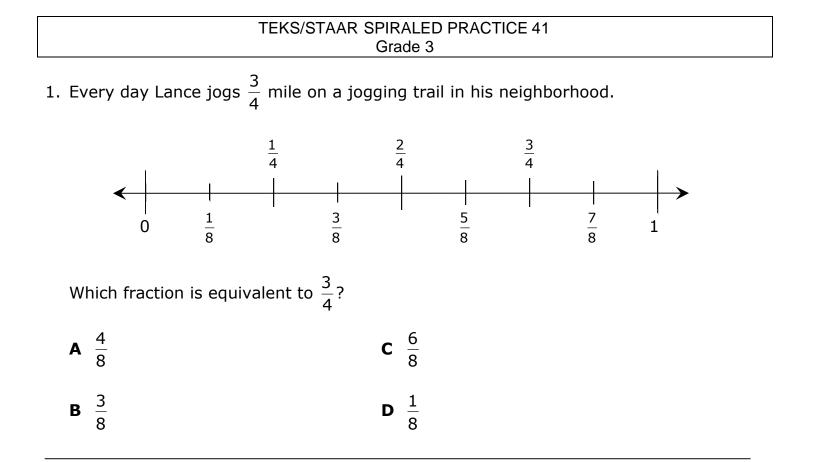
~	Number of Shirts	7	8	11	15
G	Total Cost	\$56	\$64	\$72	\$80

School Spirit Shirts


ы	Number of Shirts	7	8	11	15
п	Total Cost	\$15	\$16	\$19	\$23

School Spirit Shirts

	Number of Shirts	7	8	11	15
J	Total Cost	\$56	\$64	\$88	\$120

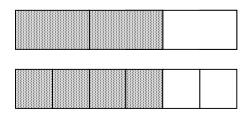

TEKS/STAAR SPIRALED PRACTICE 21 Grade 3

3. The dimensions of two rectangles are shown below.

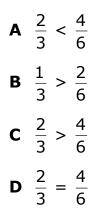
Which statement about these rectangles is true?

- **A** The perimeter of Rectangle B is 19 millimeters less than the perimeter of Rectangle A.
- **B** The perimeter of Rectangle B is 38 millimeters less than the perimeter of Rectangle A.
- **C** The perimeter of Rectangle B is 14 millimeters less than the perimeter of Rectangle A.
- **D** The perimeter of Rectangle B is 42 millimeters less than the perimeter of Rectangle A.

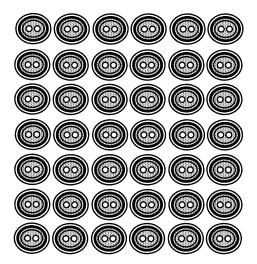
- 2. Paul put 6 green color tiles, 6 blue color tiles, 6 yellow color tiles, and 6 red color tiles into a drawstring bag. Which represents the number of tiles he put into the bag?
 - **F** $6 \times 6 = 36$ **G** $3 \times 6 = 18$ **H** $4 \times 6 = 24$ **J** $4 \times 5 = 20$
- 3. Jackson took 1 hour 26 minutes to clean his bathroom and his bedroom. He took 42 minutes to clean his bathroom.

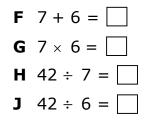


How long did it take him to clean his bedroom?

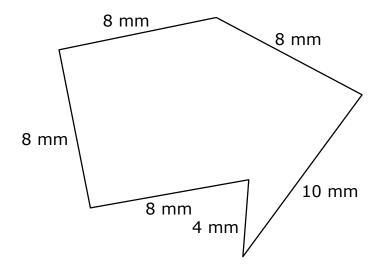

- **A** 26 min
- **B** 1 hr
- **C** 44 min
- **D** 1 hr 2 min

TEKS/STAAR SPIRALED PRACTICE 61 Grade 3


1. The two bars are shaded to represent 2 fractions.


Which of the following is shown by the shaded part of the models?

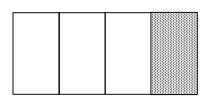
2. The picture shows a group of 42 buttons.

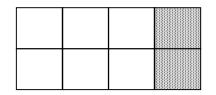


Which number sentence represents the number of buttons in each row?

TEKS/STAAR SPIRALED PRACTICE 61 Grade 3

3. The side lengths of a figure are shown below.


What is the perimeter of the figure in millimeters?


Record your answer and fill in the bubbles on the grid. Be sure to use the correct place value.

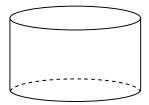
<u>ଚ୍ଚାଚ୍ଚାର୍ କ୍</u>	@J@@@@@@@	@J@@@@@@@	•
8	8 9	8 9	

TEKS/STAAR SPIRALED PRACTICE 81 Grade 3

1. The two figures shown below are the same size.

Which of the following is true about the models?

- **A** The shaded part of both models represents $\frac{1}{8}$.
- **B** The shaded part of the models represents equivalent fractions because they represent the same portion of the same size whole.
- **C** The shaded part of both models represents $\frac{2}{4}$.
- **D** The unshaded part of the models does not represent equivalent fractions because they do not represent the same portion of the same size whole.


2. Marcie needs 6 pieces of candy to put in 1 bag. The expression below represents the number of pieces of candy Marcie needs to put in 8 bags.

Which of the following is represented by the expression?

- $\mathbf{F} \quad \mathbf{6} \times \mathbf{6} = \mathbf{36}$
- **G** 8 + 6 = 14
- **H** $6 \times 8 = 48$
- **J** 6 + 8 = 14

TEKS/STAAR SPIRALED PRACTICE 81 Grade 3

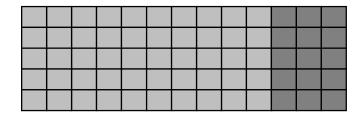
3. A cylinder is represented below.

Which of the following is a true statement?

- **A** A cylinder has no curved surface and 1 circular face called a base.
- **B** A cylinder has 1 curved surface and 1 circular face called a base.
- **C** A cylinder has no curved surface and 2 circular faces called bases.
- **D** A cylinder has 1 curved surface and 2 circular faces called bases.

TEKS/STAAR SPIRALED PRACTICE 101 Grade 3

1. Miriam finished $\frac{2}{5}$ of her homework before dinner. Her brother, Simeon, finished $\frac{2}{6}$ of his homework before dinner. Which statement is true?


A $\frac{2}{6} = \frac{2}{5}$ **B** $\frac{2}{5} < \frac{2}{6}$ **C** $\frac{2}{6} > \frac{2}{5}$ **D** $\frac{2}{5} > \frac{2}{6}$

2. The distance from Lainie's house to her grandmother's house is 97 miles. Lainie's family left their house to drive to her grandmother's house. They drove 34 miles, then they stopped for gas. They drove 38 more miles before they took an exit off the highway.

What is the distance they have left to drive to her grandmother's house?

- **F** 63 miles
- G 25 miles
- H 35 miles
- J 59 miles

3. Keith shaded squares on a piece of grid paper. Each square represents 1 square inch.

How many more square inches of light gray are shaded than dark gray?

- **A** 35
- **B** 65
- **C** 25
- **D** 55